State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility
نویسندگان
چکیده
The brain is a dynamic, flexible network that continuously reconfigures. However, the neural underpinnings of how state-dependent variability of dynamic functional connectivity (vdFC) relates to cognitive flexibility are unclear. We therefore investigated flexible functional connectivity during resting-state and task-state functional magnetic resonance imaging (rs-fMRI and t-fMRI, resp.) and performed separate, out-of-scanner neuropsychological testing. We hypothesize that state-dependent vdFC between the frontoparietal network (FPN) and the default mode network (DMN) relates to cognitive flexibility. Seventeen healthy subjects performed the Stroop color word test and underwent t-fMRI (Stroop computerized version) and rs-fMRI. Time series were extracted from a cortical atlas, and a sliding window approach was used to obtain a number of correlation matrices per subject. vdFC was defined as the standard deviation of connectivity strengths over these windows. Higher task-state FPN-DMN vdFC was associated with greater out-of-scanner cognitive flexibility, while the opposite relationship was present for resting-state FPN-DMN vdFC. Moreover, greater contrast between task-state and resting-state vdFC related to better cognitive performance. In conclusion, our results suggest that not only the dynamics of connectivity between these networks is seminal for optimal functioning, but also that the contrast between dynamics across states reflects cognitive performance.
منابع مشابه
Intrinsic Architecture Underlying the Relations among the Default, Dorsal Attention, and Frontoparietal Control Networks of the Human Brain
Human cognition is increasingly characterized as an emergent property of interactions among distributed, functionally specialized brain networks. We recently demonstrated that the antagonistic "default" and "dorsal attention" networks--subserving internally and externally directed cognition, respectively--are modulated by a third "frontoparietal control" network that flexibly couples with eithe...
متن کاملAn fMRI investigation of the relationship between future imagination and cognitive flexibility.
While future imagination is largely considered to be a cognitive process grounded in default mode network activity, studies have shown that future imagination recruits regions in both default mode and frontoparietal control networks. In addition, it has recently been shown that the ability to imagine the future is associated with cognitive flexibility, and that tasks requiring cognitive flexibi...
متن کاملAltered Functional Connectivity between Emotional and Cognitive Resting State Networks in Euthymic Bipolar I Disorder Patients
Bipolar disorder is characterized by a functional imbalance between hyperactive ventral/limbic areas and hypoactive dorsal/cognitive brain regions potentially contributing to affective and cognitive symptoms. Resting-state studies in bipolar disorder have identified abnormal functional connectivity between these brain regions. However, most of these studies used a seed-based approach, thus rest...
متن کاملMind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks
Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resona...
متن کاملAge-Related Differences in Dynamic Interactions Among Default Mode, Frontoparietal Control, and Dorsal Attention Networks during Resting-State and Interference Resolution
Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 339 شماره
صفحات -
تاریخ انتشار 2016